Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.196
Filtrar
1.
Mol Plant Pathol ; 25(5): e13462, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695630

RESUMO

MicroRNAs (miRNAs) are widely involved in various biological processes of plants and contribute to plant resistance against various pathogens. In this study, upon sugarcane mosaic virus (SCMV) infection, the accumulation of maize (Zea mays) miR398b (ZmmiR398b) was significantly reduced in resistant inbred line Chang7-2, while it was increased in susceptible inbred line Mo17. Degradome sequencing analysis coupled with transient co-expression assays revealed that ZmmiR398b can target Cu/Zn-superoxidase dismutase2 (ZmCSD2), ZmCSD4, and ZmCSD9 in vivo, of which the expression levels were all upregulated by SCMV infection in Chang7-2 and Mo17. Moreover, overexpressing ZmmiR398b (OE398b) exhibited increased susceptibility to SCMV infection, probably by increasing reactive oxygen species (ROS) accumulation, which were consistent with ZmCSD2/4/9-silenced maize plants. By contrast, silencing ZmmiR398b (STTM398b) through short tandem target mimic (STTM) technology enhanced maize resistance to SCMV infection and decreased ROS levels. Interestingly, copper (Cu)-gradient hydroponic experiments demonstrated that Cu deficiency promoted SCMV infection while Cu sufficiency inhibited SCMV infection by regulating accumulations of ZmmiR398b and ZmCSD2/4/9 in maize. These results revealed that manipulating the ZmmiR398b-ZmCSD2/4/9-ROS module provides a prospective strategy for developing SCMV-tolerant maize varieties.


Assuntos
Resistência à Doença , MicroRNAs , Doenças das Plantas , Potyvirus , Zea mays , Zea mays/virologia , Zea mays/genética , Potyvirus/fisiologia , Potyvirus/patogenicidade , Doenças das Plantas/virologia , Doenças das Plantas/genética , Resistência à Doença/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio/metabolismo
2.
PLoS One ; 19(5): e0300287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696388

RESUMO

The phosphorylation of eukaryotic translational initiation factors has been shown to play a significant role in controlling the synthesis of protein. Viral infection, environmental stress, and growth circumstances cause phosphorylation or dephosphorylation of plant initiation factors. Our findings indicate that casein kinase 2 can phosphorylate recombinant wheat eIFiso4E and eIFiso4G generated from E. coli in vitro. For wheat eIFiso4E, Ser-207 was found to be the in vitro phosphorylation site. eIFiso4E lacks an amino acid that can be phosphorylated at the position corresponding to Ser-209, the phosphorylation site in mammalian eIF4E, yet phosphorylation of eIFiso4E has effects on VPg binding affinity that are similar to those of phosphorylation of mammalian eIF4E. The addition of VPg and phosphorylated eIFiso4F to depleted wheat germ extract (WGE) leads to enhancement of translation of both uncapped and capped viral mRNA. The addition of PABP together with eIFiso4Fp and eIF4B to depleted WGE increases both uncapped and capped mRNA translation. However, it exhibits a translational advantage specifically for uncapped mRNA, implying that the phosphorylation of eIFiso4F hinders cap binding while promoting VPg binding, thereby facilitating uncapped translation. These findings indicate TEV virus mediates VPg-dependent translation by engaging a mechanism entailing phosphorylated eIFiso4Fp and PABP. To elucidate the molecular mechanisms underlying these observed effects, we studied the impact of PABP and/or eIF4B on the binding of VPg with eIFiso4Fp. The inclusion of PABP and eIF4B with eIFiso4Fp resulted in about 2-fold increase in affinity for VPg (Kd = 24 ± 1.7 nM), as compared to the affinity of eIFiso4Fp alone (Kd = 41.0 ± 3.1 nM). The interactions between VPg and eIFiso4Fp were determined to be both enthalpically and entropically favorable, with the enthalpic contribution accounting for 76-97% of the ΔG at 25°C, indicating a substantial role of hydrogen bonding in enhancing the stability of the complex. The binding of PABP to eIFiso4Fp·4B resulted in a conformational alteration, leading to a significant enhancement in the binding affinity to VPg. These observations suggest PABP enhances the affinity between eIFiso4Fp and VPg, leading to an overall conformational change that provides a stable platform for efficient viral translation.


Assuntos
Fatores de Iniciação em Eucariotos , Proteínas de Ligação a Poli(A) , Potyvirus , Ligação Proteica , Biossíntese de Proteínas , Triticum , Fosforilação , Potyvirus/metabolismo , Potyvirus/genética , Triticum/virologia , Triticum/metabolismo , Triticum/genética , Fatores de Iniciação em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/genética , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Caseína Quinase II/metabolismo , Caseína Quinase II/genética
3.
BMC Plant Biol ; 24(1): 375, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38714928

RESUMO

BACKGROUND: Potato virus Y (PVY) is among the economically most damaging viral pathogen in production of potato (Solanum tuberosum) worldwide. The gene Rysto derived from the wild potato relative Solanum stoloniferum confers extreme resistance to PVY. RESULTS: The presence and diversity of Rysto were investigated in wild relatives of potato (298 genotypes representing 29 accessions of 26 tuber-bearing Solanum species) using PacBio amplicon sequencing. A total of 55 unique Rysto-like sequences were identified in 72 genotypes representing 12 accessions of 10 Solanum species and six resistant controls (potato cultivars Alicja, Bzura, Hinga, Nimfy, White Lady and breeding line PW363). The 55 Rysto-like sequences showed 89.87 to 99.98% nucleotide identity to the Rysto reference gene, and these encoded in total 45 unique protein sequences. While Rysto-like26 identified in Alicja, Bzura, White Lady and Rysto-like16 in PW363 encode a protein identical to the Rysto reference, the remaining 44 predicted Rysto-like proteins were 65.93 to 99.92% identical to the reference. Higher levels of diversity of the Rysto-like sequences were found in the wild relatives of potato than in the resistant control cultivars. The TIR and NB-ARC domains were the most conserved within the Rysto-like proteins, while the LRR and C-JID domains were more variable. Several Solanum species, including S. antipoviczii and S. hougasii, showed resistance to PVY. This study demonstrated Hyoscyamus niger, a Solanaceae species distantly related to Solanum, as a host of PVY. CONCLUSIONS: The new Rysto-like variants and the identified PVY resistant potato genotypes are potential resistance sources against PVY in potato breeding. Identification of H. niger as a host for PVY is important for cultivation of this plant, studies on the PVY management, its ecology, and migrations. The amplicon sequencing based on PacBio SMRT and the following data analysis pipeline described in our work may be applied to obtain the nucleotide sequences and analyze any full-length genes from any, even polyploid, organisms.


Assuntos
Resistência à Doença , Variação Genética , Doenças das Plantas , Potyvirus , Solanum tuberosum , Solanum , Potyvirus/fisiologia , Resistência à Doença/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Solanum/genética , Solanum/virologia , Solanum tuberosum/genética , Solanum tuberosum/virologia , Genes de Plantas , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
PLoS One ; 19(5): e0302692, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722893

RESUMO

Tobacco vein necrosis (TVN) is a complex phenomenon regulated by different genetic determinants mapped in the HC-Pro protein (amino acids N330, K391 and E410) and in two regions of potato virus Y (PVY) genome, corresponding to the cytoplasmic inclusion (CI) protein and the nuclear inclusion protein a-protease (NIa-Pro), respectively. A new determinant of TVN was discovered in the MK isolate of PVY which, although carried the HC-Pro determinants associated to TVN, did not induce TVN. The HC-Pro open reading frame (ORF) of the necrotic infectious clone PVY N605 was replaced with that of the non-necrotic MK isolate, which differed only by one amino acid at position 392 (T392 instead of I392). The cDNA clone N605_MKHCPro inoculated in tobacco induced only weak mosaics at the systemic level, demostrating that the amino acid at position 392 is a new determinant for TVN. No significant difference in accumulation in tobacco was observed between N605 and N605_MKHCPro. Since phylogenetic analyses showed that the loss of necrosis in tobacco has occurred several times independently during PVY evolution, these repeated evolutions strongly suggest that tobacco necrosis is a costly trait in PVY.


Assuntos
Nicotiana , Filogenia , Doenças das Plantas , Mutação Puntual , Potyvirus , Proteínas Virais , Nicotiana/virologia , Potyvirus/genética , Potyvirus/patogenicidade , Doenças das Plantas/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Sequência de Aminoácidos , Necrose , Dados de Sequência Molecular , Fases de Leitura Aberta/genética
5.
Pestic Biochem Physiol ; 201: 105893, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685255

RESUMO

Potato virus Y (PVY) is one of the most important pathogens in the genus Potyvirus that seriously harms agricultural production. Copper (Cu), as a micronutrient, is closely related to plant immune response. In this study, we found that foliar application of Cu could inhibit PVY infection to some extent, especially at 7 days post inoculation (dpi). To explore the effect of Cu on PVY infection, transcriptome sequencing analysis was performed on PVY-infected tobacco with or without Cu application. Several key pathways regulated by Cu were identified, including plant-pathogen interaction, inorganic ion transport and metabolism, and photosynthesis. Moreover, the results of virus-induced gene silencing (VIGS) assays revealed that NbMLP423, NbPIP2, NbFd and NbEXPA played positive roles in resistance to PVY infection in Nicotiana benthamiana. In addition, transgenic tobacco plants overexpressing NtEXPA11 showed increased resistance to PVY infection. These results contribute to clarify the role and regulatory mechanism of Cu against PVY infection, and provide candidate genes for disease resistance breeding.


Assuntos
Cobre , Resistência à Doença , Nicotiana , Doenças das Plantas , Potyvirus , Nicotiana/virologia , Nicotiana/genética , Potyvirus/fisiologia , Cobre/farmacologia , Doenças das Plantas/virologia , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Plantas Geneticamente Modificadas/virologia , Regulação da Expressão Gênica de Plantas , Transcriptoma
6.
Virus Res ; 344: 199369, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608732

RESUMO

Tobacco (Nicotiana tabacum) is one of the major cash crops in China. Potato virus Y (PVY), a representative member of the genus Potyvirus, greatly reduces the quality and yield of tobacco leaves by inducing veinal necrosis. Mild strain-mediated cross-protection is an attractive method of controlling diseases caused by PVY. Currently, there is a lack of effective and stable attenuated PVY mutants. Potyviral helper component-protease (HC-Pro) is a likely target for the development of mild strains. Our previous studies showed that the residues lysine at positions 124 and 182 (K124 and K182) in HC-Pro were involved in PVY virulence, and the conserved KITC motif in HC-Pro was involved in aphid transmission. In this study, to improve the stability of PVY mild strains, K at position 50 (K50) in KITC motif, K124, and K182 were separately substituted with glutamic acid (E), leucine (L), and arginine (R), resulting in a triple-mutant PVY-HCELR. The mutant PVY-HCELR had attenuated virulence and did not induce leaf veinal necrosis symptoms in tobacco plants and could not be transmitted by Myzus persicae. Furthermore, PVY-HCELR mutant was genetically stable after six serial passages, and only caused mild mosaic symptoms in tobacco plants even at 90 days post inoculation. The tobacco plants cross-protected by PVY-HCELR mutant showed high resistance to the wild-type PVY. This study showed that PVY-HCELR mutant was a promising mild mutant for cross-protection to control PVY.


Assuntos
Proteção Cruzada , Mutação , Nicotiana , Doenças das Plantas , Potyvirus , Proteínas Virais , Potyvirus/genética , Potyvirus/patogenicidade , Potyvirus/enzimologia , Nicotiana/virologia , Doenças das Plantas/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência , Animais , Afídeos/virologia , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Folhas de Planta/virologia , China
7.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673914

RESUMO

Plant viral nanoparticles (VNPs) are attractive to nanomedicine researchers because of their safety, ease of production, resistance, and straightforward functionalization. In this paper, we developed and successfully purified a VNP derived from turnip mosaic virus (TuMV), a well-known plant pathogen, that exhibits a high affinity for immunoglobulins G (IgG) thanks to its functionalization with the Z domain of staphylococcal Protein A via gene fusion. We selected cetuximab as a model IgG to demonstrate the versatility of this novel TuMV VNP by developing a fluorescent nanoplatform to mark tumoral cells from the Cal33 line of a tongue squamous cell carcinoma. Using confocal microscopy, we observed that fluorescent VNP-cetuximab bound selectively to Cal33 and was internalized, revealing the potential of this nanotool in cancer research.


Assuntos
Nanopartículas , Humanos , Nanopartículas/química , Linhagem Celular Tumoral , Potyvirus , Imunoglobulina G/metabolismo , Cetuximab/farmacologia , Cetuximab/química , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo
8.
Viruses ; 16(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675832

RESUMO

Glycosylation, a dynamic modification prevalent in viruses and higher eukaryotes, is principally regulated by uridine diphosphate (UDP)-glycosyltransferases (UGTs) in plants. Although UGTs are involved in plant defense responses, their responses to most pathogens, especially plant viruses, remain unclear. Here, we aimed to identify UGTs in the whole genome of Nicotiana benthamiana (N. benthamiana) and to analyze their function in Chinese wheat mosaic virus (CWMV) infection. A total of 147 NbUGTs were identified in N. benthamiana. To conduct a phylogenetic analysis, the UGT protein sequences of N. benthamiana and Arabidopsis thaliana were aligned. The gene structure and conserved motifs of the UGTs were also analyzed. Additionally, the physicochemical properties and predictable subcellular localization were examined in detail. Analysis of cis-acting elements in the putative promoter revealed that NbUGTs were involved in temperature, defense, and hormone responses. The expression levels of 20 NbUGTs containing defense-related cis-acting elements were assessed in CWMV-infected N. benthamiana, revealing a significant upregulation of 8 NbUGTs. Subcellular localization analysis of three NbUGTs (NbUGT12, NbUGT16 and NbUGT17) revealed their predominant localization in the cytoplasm of N. benthamiana leaves, and NbUGT12 was also distributed in the chloroplasts. CWMV infection did not alter the subcellular localization of NbUGT12, NbUGT16, and NbUGT17. Transient overexpression of NbUGT12, NbUGT16, and NbUGT17 enhanced CWMV infection, whereas the knockdown of NbUGT12, NbUGT16 and NbUGT17 inhibited CWMV infection in N. benthamiana. These NbUGTs could serve as potential susceptibility genes to facilitate CWMV infection. Overall, the findings throw light on the evolution and function of NbUGTs.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Glicosiltransferases , Nicotiana , Filogenia , Doenças das Plantas , Proteínas de Plantas , Nicotiana/virologia , Nicotiana/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Difosfato de Uridina/metabolismo , Potyvirus/genética , Potyvirus/fisiologia , Estudo de Associação Genômica Ampla
9.
Viruses ; 16(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38675886

RESUMO

Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) are among the world's most serious and widespread orchid viruses; they often infect orchids, causing devastating losses to the orchid industry. Therefore, it is critical to establish a method that can rapidly and accurately detect viruses in the field using simple instruments, which will largely reduce the further spread of viruses and improve the quality of the orchid industry and is suitable for mass promotion and application at grassroots agrotechnical service points. In this investigation, we established a rapid amplification method for virus detection at 39 °C for 35 min to detect the presence of CymMV and ORSV simultaneously, sensitively, and specifically in orchids. Primers for the capsid protein (CP)-encoding genes of both viruses were designed and screened, and the reaction conditions were optimized. The experimental amplification process was completed in just 35 min at 39 °C. There were no instances of nonspecific amplification observed when nine other viruses were present. The RPA approach had detection limits of 104 and 103 copies for pMD19T-CymMV and pMD19T-ORSV, respectively. Moreover, the duplex RT-RPA investigation confirmed sensitivity and accuracy via a comparison of detection results from 20 field samples with those of a gene chip. This study presents a precise and reliable detection method for CymMV and ORSV using RT-RPA. The results demonstrate the potential of this method for rapid virus detection. It is evident that this method could have practical applications in virus detection processes.


Assuntos
Orchidaceae , Doenças das Plantas , Potexvirus , Doenças das Plantas/virologia , Orchidaceae/virologia , Sensibilidade e Especificidade , Proteínas do Capsídeo/genética , Potyvirus/genética , Potyvirus/isolamento & purificação , Potyvirus/classificação , RNA Viral/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Primers do DNA/genética
10.
Sci Rep ; 14(1): 9708, 2024 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678095

RESUMO

African yam bean (AYB) (Sphenostylis stenocarpa (Hochst ex. A. Rich.) harms) an underutilized legume that produces nutritionally healthy seeds and tubers in some variety. The low yield of the crop is attributed to production constraints such as attacks by pest and disease-causing organisms such as fungi, bacteria and viruses. In this study, one hundred AYB accessions were evaluated for resistance to viral infection. The AYB accessions were planted using a randomized complete block design on the experimental field at the International Institute of Tropical Agriculture (IITA) Ibadan, Nigeria. Viral disease severity was assessed at 10, 12, 14, 16 and 18 weeks after planting (WAP) based on disease symptoms using disease severity index on visual scale of 1-5. Antigen-coated plate enzyme linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction were used to index diseased leaf samples collected from the field. Result from five virus species (Cowpea mild mottle virus, Cowpea mottle virus, Southern bean mosaic virus, Cowpea mosaic virus and Bean common mosaic virus) were detected in few accessions while mixed infections were observed in some accessions. TSs-552, TSs-577, TSs-580, TSs-560 and TSs-600 were devoid of viruses and could be resistant. There were no significant differences at p < 0.05 in the mean disease incidence (DI) of viral diseases. However, at 18 weeks after planting, TSs-604 had the highest (100%) mean DI while TSs-584 had the lowest (13.33%) mean DI. Cluster analysis based on the AUDPC produced 6 main clusters, the clusters revealed grouping patterns in which AYB lines with similar resistance ratings were shown to form unique clusters. The information generated from this study will contribute to the development of strategies in the management of virus diseases infecting AYB.


Assuntos
Resistência à Doença , Doenças das Plantas , Doenças das Plantas/virologia , Resistência à Doença/genética , Comovirus/genética , Nigéria , Potyvirus/genética , Potyvirus/patogenicidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Folhas de Planta/virologia , Fabaceae/virologia
11.
J Agric Food Chem ; 72(13): 6979-6987, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38520352

RESUMO

Potato virus Y (PVY) is an important plant virus that has spread worldwide, causing significant economic losses. To search for novel structures as potent antiviral agents, a series of chiral indole derivatives containing oxazoline moieties were designed and synthesized and their anti-PVY activities were evaluated. Biological activity tests demonstrated that many chiral compounds exhibited promising anti-PVY activities and that their absolute configurations exhibited obvious distinctions in antiviral bioactivities. Notably, compound (S)-4v displayed excellent curative and protective efficacy against PVY, with EC50 values of 328.6 and 256.1 µg/mL, respectively, which were superior to those of commercial virucide ningnanmycin (NNM, 437.4 and 397.4 µg/mL, respectively). The preliminary antiviral mechanism was investigated to determine the difference in antiviral activity between the two enantiomers of 4v chiral compounds. Molecular docking indicated a stronger binding affinity between the coating proteins of PVY (PVY-CP) and (S)-4v (-6.5 kcal/mol) compared to (R)-4v (-6.2 kcal/mol). Additionally, compound (S)-4v can increase the chlorophyll content and defense-related enzyme activities more effectively than its enantiomer. Therefore, this study provides an important basis for the development of chiral indole derivatives containing oxazoline moieties as novel agricultural chemicals.


Assuntos
Potyvirus , Vírus do Mosaico do Tabaco , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/química , Indóis/farmacologia , Desenho de Fármacos
12.
Virology ; 594: 110032, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38467094

RESUMO

Many viruses employ a process known as superinfection exclusion (SIE) to block subsequent entry or replication of the same or closely related viruses in the cells they occupy. SIE is also referred to as Cross-protection refers to the situation where a host plant infected by a mild strain of a virus or viroid gains immunity against a more severe strain closely related to the initial infectant. The mechanisms underlying cross-protection are not fully understood. In this study, we performed a comparative transcriptomic analysis of potato (Solanum tuberosum L.) leaves. The strains PVYN-Wi-HLJ-BDH-2 and PVYNTN-NW-INM-W-369-12 are henceforth designated as BDH and 369, respectively. In total, 806 differentially expressed genes (DEGs) were detected between the Control and JZ (preinfected with BDH and challenge with 369) treatment. Gene Ontology (GO) analysis showed that the response to external biological stimulation, signal transduction, kinase, immunity, redox pathways were significantly enriched. Among these pathways, we identified numerous differentially expressed metabolites related to virus infection. Moreover, our data also identified a small set of genes that likely play important roles in the establishment of cross-protection. Specifically, we observed significant differential expression of the A1-II gamma-like gene, elongation factor 1-alpha-like gene, and subtilisin-like protease StSBT1.7 gene, with StSBT1.7 being the most significant in our transcriptome data. These genes can stimulate the expression of defense plant genes, induce plant chemical defense, and participate in the induction of trauma and pathogenic bacteria. Our findings provided insights into the mechanisms underlying the ability of mild viruses to protect host plants against subsequent closely related virus infection in Solanum tuberosum L.


Assuntos
Potyvirus , Solanum tuberosum , Viroses , Potyvirus/genética , Perfilação da Expressão Gênica , Transcriptoma , Doenças das Plantas
13.
PLoS Pathog ; 20(3): e1012086, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484013

RESUMO

Papain-like cysteine proteases (PLCPs) play pivotal roles in plant defense against pathogen invasions. While pathogens can secrete effectors to target and inhibit PLCP activities, the roles of PLCPs in plant-virus interactions and the mechanisms through which viruses neutralize PLCP activities remain largely uncharted. Here, we demonstrate that the expression and activity of a maize PLCP CCP1 (Corn Cysteine Protease), is upregulated following sugarcane mosaic virus (SCMV) infection. Transient silencing of CCP1 led to a reduction in PLCP activities, thereby promoting SCMV infection in maize. Furthermore, the knockdown of CCP1 resulted in diminished salicylic acid (SA) levels and suppressed expression of SA-responsive pathogenesis-related genes. This suggests that CCP1 plays a role in modulating the SA signaling pathway. Interestingly, NIa-Pro, the primary protease of SCMV, was found to interact with CCP1, subsequently inhibiting its protease activity. A specific motif within NIa-Pro termed the inhibitor motif was identified as essential for its interaction with CCP1 and the suppression of its activity. We have also discovered that the key amino acids responsible for the interaction between NIa-Pro and CCP1 are crucial for the virulence of SCMV. In conclusion, our findings offer compelling evidence that SCMV undermines maize defense mechanisms through the interaction of NIa-Pro with CCP1. Together, these findings shed a new light on the mechanism(s) controlling the arms races between virus and plant.


Assuntos
Cisteína Proteases , Vírus do Mosaico , Potyvirus , Zea mays/genética , Cisteína Proteases/genética , Ácido Salicílico/metabolismo , Vírus do Mosaico/metabolismo , Doenças das Plantas
14.
Mol Plant Pathol ; 25(3): e13440, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38460111

RESUMO

Given the detrimental effects of excessive reactive oxygen species (ROS) accumulation in plant cells, various antioxidant mechanisms have evolved to maintain cellular redox homeostasis, encompassing both enzymatic components (e.g., catalase, superoxide dismutase) and non-enzymatic ones. Despite extensive research on the role of antioxidant systems in plant physiology and responses to abiotic stresses, the potential exploitation of antioxidant enzymes by plant viruses to facilitate viral infection remains insufficiently addressed. Herein, we demonstrate that maize catalases (ZmCATs) exhibited up-regulated enzymatic activities upon sugarcane mosaic virus (SCMV) infection. ZmCATs played crucial roles in SCMV multiplication and infection by catalysing the decomposition of excess cellular H2 O2 and promoting the accumulation of viral replication-related cylindrical inclusion (CI) protein through interaction. Peroxisome-localized ZmCATs were found to be distributed around SCMV replication vesicles in Nicotiana benthamiana leaves. Additionally, the helper component-protease (HC-Pro) of SCMV interacted with ZmCATs and enhanced catalase activities to promote viral accumulation. This study unveils a significant involvement of maize catalases in modulating SCMV multiplication and infection through interaction with two viral factors, thereby enhancing our understanding regarding viral strategies for manipulating host antioxidant mechanisms towards robust viral accumulation.


Assuntos
Potyvirus , Zea mays , Catalase , Antioxidantes , Potyvirus/fisiologia , Replicação Viral , Doenças das Plantas
15.
J Agric Food Chem ; 72(11): 5699-5709, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38462724

RESUMO

Potato virus Y (PVY) is a plant virus that is known to be responsible for substantial economic losses in agriculture. Within the PVY genome, viral genome-linked protein (VPg) plays a pivotal role in the viral translation process. In this study, VPg was used as a potential target for analyzing the antiviral activity of tryptanthrin derivatives. In vitro, the dissociation constants of B1 with PVY VPg were 0.69 µmol/L (measured by microscale thermophoresis) and 4.01 µmol/L (measured via isothermal titration calorimetry). B1 also strongly bound to VPg proteins from three other Potyviruses. Moreover, in vivo experiments demonstrated that B1 effectively suppressed the expression of the PVY gene. Molecular docking experiments revealed that B1 formed a hydrogen bond with N121 and that no specific binding occurred between B1 and the PVY VPgN121A mutant. Therefore, N121 is a key amino acid residue in PVY VPg involved in B1 binding. These results highlight the potential of PVY VPg as a potential target for the development of antiviral agents.


Assuntos
Potyvirus , Quinazolinas , Solanum tuberosum , Potyvirus/genética , Simulação de Acoplamento Molecular , Proteínas Virais/genética , Proteínas Virais/metabolismo , Genoma Viral , Solanum tuberosum/metabolismo , Doenças das Plantas
16.
PLoS Pathog ; 20(3): e1012064, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437247

RESUMO

Plant viruses must move through plasmodesmata (PD) to complete their life cycles. For viruses in the Potyviridae family (potyvirids), three viral factors (P3N-PIPO, CI, and CP) and few host proteins are known to participate in this event. Nevertheless, not all the proteins engaging in the cell-to-cell movement of potyvirids have been discovered. Here, we found that HCPro2 encoded by areca palm necrotic ring spot virus (ANRSV) assists viral intercellular movement, which could be functionally complemented by its counterpart HCPro from a potyvirus. Affinity purification and mass spectrometry identified several viral factors (including CI and CP) and host proteins that are physically associated with HCPro2. We demonstrated that HCPro2 interacts with both CI and CP in planta in forming PD-localized complexes during viral infection. Further, we screened HCPro2-associating host proteins, and identified a common host protein in Nicotiana benthamiana-Rubisco small subunit (NbRbCS) that mediates the interactions of HCPro2 with CI or CP, and CI with CP. Knockdown of NbRbCS impairs these interactions, and significantly attenuates the intercellular and systemic movement of ANRSV and three other potyvirids (turnip mosaic virus, pepper veinal mottle virus, and telosma mosaic virus). This study indicates that a nucleus-encoded chloroplast-targeted protein is hijacked by potyvirids as the scaffold protein to assemble a complex to facilitate viral movement across cells.


Assuntos
Potyvirus , Proteínas Virais , Proteínas Virais/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Potyvirus/metabolismo , Doenças das Plantas
17.
Phytopathology ; 114(2): 484-495, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38408034

RESUMO

Maize lethal necrosis (MLN) is a viral disease caused by host co-infection by maize chlorotic mottle virus (MCMV) and a potyvirus, such as sugarcane mosaic virus (SCMV). The disease is most effectively managed by growing MLN-resistant varieties. However, the relative importance of MCMV and potyvirus resistance in managing this synergistic disease is poorly characterized. In this study, we evaluated the effects of SCMV and/or MCMV resistance on disease, virus titers, and synergism and explored expression patterns of known potyvirus resistance genes TrxH and ABP1. MLN disease was significantly lower in both the MCMV-resistant and SCMV-resistant inbred lines compared with the susceptible control Oh28. Prior to 14 days postinoculation (dpi), MCMV titers in resistant lines N211 and KS23-6 were more than 100,000-fold lower than found in the susceptible Oh28. However, despite no visible symptoms, titer differences between MCMV-resistant and -susceptible lines were negligible by 14 dpi. In contrast, systemic SCMV titers in the potyvirus-resistant line, Pa405, ranged from 130,000-fold to 2 million-fold lower than susceptible Oh28 as disease progressed. Initial TrxH expression was up to 49,000-fold lower in Oh28 compared with other genotypes, whereas expression of ABP1 was up to 4.5-fold lower. Measures of virus synergy indicate that whereas MCMV resistance is effective in early infection, strong potyvirus resistance is critical for reducing synergist effects of co-infection on MCMV titer. These results emphasize the importance of both potyvirus resistance and MCMV resistance in an effective breeding program for MLN management.


Assuntos
Coinfecção , Potyvirus , Tombusviridae , Doenças das Plantas , Necrose
18.
J Agric Food Chem ; 72(7): 3506-3519, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346922

RESUMO

Microbial secondary metabolites produced by Streptomyces have diverse application prospects in the control of plant diseases. Herein, the fermentation filtrate of Streptomyces SN40 effectively inhibited the infection of tobacco mosaic virus (TMV) in Nicotiana glutinosa and systemic infection of potato virus Y (PVY) in Nicotiana benthamiana. Additionally, metabolomic analysis indicated that anisomycin (C14H19NO4) and trans-3-indoleacrylic acid (C11H9NO2) were highly abundant in the crude extract and that anisomycin effectively suppressed the infection of TMV as well as PVY. Subsequently, transcriptomic analysis was conducted to elucidate its mechanisms on the induction of host defense responses. Furthermore, the results of molecular docking suggested that anisomycin can potentially bind with the helicase domain (Hel) of TMV replicase, TMV coat protein (CP), and PVY helper component proteinase (HC-Pro). This study demonstrates new functions of anisomycin in virus inhibition and provides important theoretical significance for the development of new biological pesticides to control diverse plant viruses.


Assuntos
Potyvirus , Streptomyces , Vírus do Mosaico do Tabaco , Anisomicina , Simulação de Acoplamento Molecular , Vírus do Mosaico do Tabaco/genética , Streptomyces/genética , Antivirais/farmacologia , Doenças das Plantas
19.
Plant Cell Rep ; 43(2): 54, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315215

RESUMO

KEY MESSAGE: Arbuscular mycorrhizal fungi generated systemic acquired resistance in cucumber to Zucchini yellow mosaic virus, indicating their prospective application in the soil as a sustainable, environmentally friendly approach to inhibit the spread of pathogens. The wide spread of plant pathogens affects the whole world, causing several plant diseases and threatening national food security as it disrupts the quantity and quality of economically important crops. Recently, environmentally acceptable mitigating practices have been required for sustainable agriculture, restricting the use of chemical fertilizers in agricultural areas. Herein, the biological control of Zucchini yellow mosaic virus (ZYMV) in cucumber (Cucumis sativus L.) plants using arbuscular mycorrhizal (AM) fungi was investigated. Compared to control plants, ZYMV-infected plants displayed high disease incidence (DI) and severity (DS) with various symptoms, including severe yellow mosaic, mottling and green blisters of leaves. However, AM fungal inoculation exhibited 50% inhibition for these symptoms and limited DS to 26% as compared to non-colonized ones. The detection of ZYMV by the Enzyme-Linked Immunosorbent Assay technique exhibited a significant reduction in AM-inoculated plants (5.23-fold) compared with non-colonized ones. Besides, mycorrhizal root colonization (F%) was slightly reduced by ZYMV infection. ZYMV infection decreased all growth parameters and pigment fractions and increased the malondialdehyde (MDA) content, however, these parameters were significantly enhanced and the MDA content was decreased by AM fungal colonization. Also, the protein, proline and antioxidant enzymes (POX and CAT) were increased with ZYMV infection with more enhancements due to AM root colonization. Remarkably, defence pathogenesis-related (PR) genes such as PR-a, PR-b, and PR-10 were quickly expressed in response to AM treatment. Our findings demonstrated the beneficial function of AM fungi in triggering the plant defence against ZYMV as they caused systemic acquired resistance in cucumber plants and supported their potential use in the soil as an environment-friendly method of hindering the spread of pathogenic microorganisms sustainably.


Assuntos
Cucumis sativus , Vírus do Mosaico , Micorrizas , Potyvirus , Viroses , Micorrizas/fisiologia , Cucumis sativus/fisiologia , Simbiose , Verduras , Solo
20.
Mol Plant Pathol ; 25(2): e13434, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38388027

RESUMO

Viruses rely completely on host translational machinery to produce the proteins encoded by their genes. Controlling translation initiation is important for gaining translational advantage in conflicts between the host and virus. The eukaryotic translation initiation factor 4E (eIF4E) has been reported to be hijacked by potyviruses for virus multiplication. The role of translation regulation in defence and anti-defence between plants and viruses is not well understood. We report that the transcript level of eIF6 was markedly increased in turnip mosaic virus (TuMV)-infected Nicotiana benthamiana. TuMV infection was impaired by overexpression of N. benthamiana eIF6 (NbeIF6) either transiently expressed in leaves or stably expressed in transgenic plants. Polysome profile assays showed that overexpression of NbeIF6 caused the accumulation of 40S and 60S ribosomal subunits, the reduction of polysomes, and also compromised TuMV UTR-mediated translation, indicating a defence role for upregulated NbeIF6 during TuMV infection. However, the polysome profile in TuMV-infected leaves was not identical to that in leaves overexpressing NbeIF6. Further analysis showed that TuMV NIb protein, the RNA-dependent RNA polymerase, interacted with NbeIF6 and interfered with its effect on the ribosomal subunits, suggesting that NIb might have a counterdefence role. The results propose a possible regulatory mechanism at the translation level during plant-virus interaction.


Assuntos
Potyvirus , Viroses , Nicotiana/genética , Potyvirus/genética , Processamento de Proteína Pós-Traducional , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA